Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
JACC Adv ; 3(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737008

RESUMO

Background: Statins reduce low-density lipoprotein cholesterol (LDL-C) and are efficacious in the prevention of atherosclerotic cardiovascular disease (ASCVD). Dose-response to statins varies among patients and can be modeled using three distinct pharmacological properties: (1) E0 (baseline LDL-C), (2) ED50 (potency: median dose achieving 50% reduction in LDL-C); and (3) Emax (efficacy: maximum LDL-C reduction). However, individualized dose-response and its association with ASCVD events remains unknown. Objective: We analyze the relationship between ED50 and Emax with real-world cardiovascular disease outcomes. Method: We leveraged de-identified electronic health record data to identify individuals exposed to multiple doses of the three most commonly prescribed statins (atorvastatin, simvastatin, or rosuvastatin) within the context of their longitudinal healthcare. We derived ED50 and Emax to quantify the relationship with a composite outcome of ASCVD events and all-cause mortality. Results: We estimated ED50 and Emax for 3,033 unique individuals (atorvastatin: 1,632, simvastatin: 1,089, and rosuvastatin: 312) using a nonlinear, mixed effects dose-response model. Time-to-event analyses revealed that ED50 and Emax are independently associated with the primary endpoint. Hazard ratios were 0.85 (p < 0.01), 0.83 (p < 0.01), and 0.87 (p = 0.10) for ED50 and 1.13 (p < 0.001), 1.06 (p < 0.001), and 1.15 (p = 0.009) for Emax in the atorvastatin, simvastatin, and rosuvastatin cohorts, respectively. Conclusion: The class-wide association of ED50 and Emax with clinical outcomes indicates that these measures influence the risk for ASCVD events in patients on statins.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38613820

RESUMO

OBJECTIVES: Phenotyping is a core task in observational health research utilizing electronic health records (EHRs). Developing an accurate algorithm demands substantial input from domain experts, involving extensive literature review and evidence synthesis. This burdensome process limits scalability and delays knowledge discovery. We investigate the potential for leveraging large language models (LLMs) to enhance the efficiency of EHR phenotyping by generating high-quality algorithm drafts. MATERIALS AND METHODS: We prompted four LLMs-GPT-4 and GPT-3.5 of ChatGPT, Claude 2, and Bard-in October 2023, asking them to generate executable phenotyping algorithms in the form of SQL queries adhering to a common data model (CDM) for three phenotypes (ie, type 2 diabetes mellitus, dementia, and hypothyroidism). Three phenotyping experts evaluated the returned algorithms across several critical metrics. We further implemented the top-rated algorithms and compared them against clinician-validated phenotyping algorithms from the Electronic Medical Records and Genomics (eMERGE) network. RESULTS: GPT-4 and GPT-3.5 exhibited significantly higher overall expert evaluation scores in instruction following, algorithmic logic, and SQL executability, when compared to Claude 2 and Bard. Although GPT-4 and GPT-3.5 effectively identified relevant clinical concepts, they exhibited immature capability in organizing phenotyping criteria with the proper logic, leading to phenotyping algorithms that were either excessively restrictive (with low recall) or overly broad (with low positive predictive values). CONCLUSION: GPT versions 3.5 and 4 are capable of drafting phenotyping algorithms by identifying relevant clinical criteria aligned with a CDM. However, expertise in informatics and clinical experience is still required to assess and further refine generated algorithms.

3.
Res Sq ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38559050

RESUMO

The classical amyloid cascade hypothesis postulates that the aggregation of amyloid plaques and the accumulation of intracellular hyperphosphorylated Tau tangles, together, lead to profound neuronal death. However, emerging research has demonstrated that soluble amyloid-ß oligomers (SAßOs) accumulate early, prior to amyloid plaque formation. SAßOs induce memory impairment and disrupt cognitive function independent of amyloid-ß plaques, and even in the absence of plaque formation. This work describes the development and characterization of a novel anti-SAßO (E3) nanobody generated from an alpaca immunized with SAßO. In-vitro assays and in-vivo studies using 5XFAD mice indicate that the fluorescein (FAM)-labeled E3 nanobody recognizes both SAßOs and amyloid-ß plaques. The E3 nanobody traverses across the blood-brain barrier and binds to amyloid species in the brain of 5XFAD mice. Imaging of mouse brains reveals that SAßO and amyloid-ß plaques are not only different in size, shape, and morphology, but also have a distinct spatial distribution in the brain. SAßOs are associated with neurons, while amyloid plaques reside in the extracellular matrix. The results of this study demonstrate that the SAßO nanobody can serve as a diagnostic agent with potential theragnostic applications in Alzheimer's disease.

4.
medRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38196578

RESUMO

Objectives: Phenotyping is a core task in observational health research utilizing electronic health records (EHRs). Developing an accurate algorithm demands substantial input from domain experts, involving extensive literature review and evidence synthesis. This burdensome process limits scalability and delays knowledge discovery. We investigate the potential for leveraging large language models (LLMs) to enhance the efficiency of EHR phenotyping by generating high-quality algorithm drafts. Materials and Methods: We prompted four LLMs-GPT-4 and GPT-3.5 of ChatGPT, Claude 2, and Bard-in October 2023, asking them to generate executable phenotyping algorithms in the form of SQL queries adhering to a common data model (CDM) for three phenotypes (i.e., type 2 diabetes mellitus, dementia, and hypothyroidism). Three phenotyping experts evaluated the returned algorithms across several critical metrics. We further implemented the top-rated algorithms and compared them against clinician-validated phenotyping algorithms from the Electronic Medical Records and Genomics (eMERGE) network. Results: GPT-4 and GPT-3.5 exhibited significantly higher overall expert evaluation scores in instruction following, algorithmic logic, and SQL executability, when compared to Claude 2 and Bard. Although GPT-4 and GPT-3.5 effectively identified relevant clinical concepts, they exhibited immature capability in organizing phenotyping criteria with the proper logic, leading to phenotyping algorithms that were either excessively restrictive (with low recall) or overly broad (with low positive predictive values). Conclusion: GPT versions 3.5 and 4 are capable of drafting phenotyping algorithms by identifying relevant clinical criteria aligned with a CDM. However, expertise in informatics and clinical experience is still required to assess and further refine generated algorithms.

5.
J Am Med Inform Assoc ; 31(2): 386-395, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38041473

RESUMO

OBJECTIVE: Pediatric patients have different diseases and outcomes than adults; however, existing phecodes do not capture the distinctive pediatric spectrum of disease. We aim to develop specialized pediatric phecodes (Peds-Phecodes) to enable efficient, large-scale phenotypic analyses of pediatric patients. MATERIALS AND METHODS: We adopted a hybrid data- and knowledge-driven approach leveraging electronic health records (EHRs) and genetic data from Vanderbilt University Medical Center to modify the most recent version of phecodes to better capture pediatric phenotypes. First, we compared the prevalence of patient diagnoses in pediatric and adult populations to identify disease phenotypes differentially affecting children and adults. We then used clinical domain knowledge to remove phecodes representing phenotypes unlikely to affect pediatric patients and create new phecodes for phenotypes relevant to the pediatric population. We further compared phenome-wide association study (PheWAS) outcomes replicating known pediatric genotype-phenotype associations between Peds-Phecodes and phecodes. RESULTS: The Peds-Phecodes aggregate 15 533 ICD-9-CM codes and 82 949 ICD-10-CM codes into 2051 distinct phecodes. Peds-Phecodes replicated more known pediatric genotype-phenotype associations than phecodes (248 vs 192 out of 687 SNPs, P < .001). DISCUSSION: We introduce Peds-Phecodes, a high-throughput EHR phenotyping tool tailored for use in pediatric populations. We successfully validated the Peds-Phecodes using genetic replication studies. Our findings also reveal the potential use of Peds-Phecodes in detecting novel genotype-phenotype associations for pediatric conditions. We expect that Peds-Phecodes will facilitate large-scale phenomic and genomic analyses in pediatric populations. CONCLUSION: Peds-Phecodes capture higher-quality pediatric phenotypes and deliver superior PheWAS outcomes compared to phecodes.


Assuntos
Registros Eletrônicos de Saúde , Estudo de Associação Genômica Ampla , Criança , Humanos , Estudos de Associação Genética , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
medRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662278

RESUMO

Objective: Pediatric patients have different diseases and outcomes than adults; however, existing phecodes do not capture the distinctive pediatric spectrum of disease. We aim to develop specialized pediatric phecodes (Peds-Phecodes) to enable efficient, large-scale phenotypic analyses of pediatric patients. Materials and Methods: We adopted a hybrid data- and knowledge-driven approach leveraging electronic health records (EHRs) and genetic data from Vanderbilt University Medical Center to modify the most recent version of phecodes to better capture pediatric phenotypes. First, we compared the prevalence of patient diagnoses in pediatric and adult populations to identify disease phenotypes differentially affecting children and adults. We then used clinical domain knowledge to remove phecodes representing phenotypes unlikely to affect pediatric patients and create new phecodes for phenotypes relevant to the pediatric population. We further compared phenome-wide association study (PheWAS) outcomes replicating known pediatric genotype-phenotype associations between Peds-Phecodes and phecodes. Results: The Peds-Phecodes aggregate 15,533 ICD-9-CM codes and 82,949 ICD-10-CM codes into 2,051 distinct phecodes. Peds-Phecodes replicated more known pediatric genotype-phenotype associations than phecodes (248 versus 192 out of 687 SNPs, p<0.001). Discussion: We introduce Peds-Phecodes, a high-throughput EHR phenotyping tool tailored for use in pediatric populations. We successfully validated the Peds-Phecodes using genetic replication studies. Our findings also reveal the potential use of Peds-Phecodes in detecting novel genotype-phenotype associations for pediatric conditions. We expect that Peds-Phecodes will facilitate large-scale phenomic and genomic analyses in pediatric populations. Conclusion: Peds-Phecodes capture higher-quality pediatric phenotypes and deliver superior PheWAS outcomes compared to phecodes.

7.
J Biomed Inform ; 138: 104294, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36706849

RESUMO

OBJECTIVE: The study aims to investigate whether machine learning-based predictive models for cardiovascular disease (CVD) risk assessment show equivalent performance across demographic groups (such as race and gender) and if bias mitigation methods can reduce any bias present in the models. This is important as systematic bias may be introduced when collecting and preprocessing health data, which could affect the performance of the models on certain demographic sub-cohorts. The study is to investigate this using electronic health records data and various machine learning models. METHODS: The study used large de-identified Electronic Health Records data from Vanderbilt University Medical Center. Machine learning (ML) algorithms including logistic regression, random forest, gradient-boosting trees, and long short-term memory were applied to build multiple predictive models. Model bias and fairness were evaluated using equal opportunity difference (EOD, 0 indicates fairness) and disparate impact (DI, 1 indicates fairness). In our study, we also evaluated the fairness of a non-ML baseline model, the American Heart Association (AHA) Pooled Cohort Risk Equations (PCEs). Moreover, we compared the performance of three different de-biasing methods: removing protected attributes (e.g., race and gender), resampling the imbalanced training dataset by sample size, and resampling by the proportion of people with CVD outcomes. RESULTS: The study cohort included 109,490 individuals (mean [SD] age 47.4 [14.7] years; 64.5% female; 86.3% White; 13.7% Black). The experimental results suggested that most ML models had smaller EOD and DI than PCEs. For ML models, the mean EOD ranged from -0.001 to 0.018 and the mean DI ranged from 1.037 to 1.094 across race groups. There was a larger EOD and DI across gender groups, with EOD ranging from 0.131 to 0.136 and DI ranging from 1.535 to 1.587. For debiasing methods, removing protected attributes didn't significantly reduced the bias for most ML models. Resampling by sample size also didn't consistently decrease bias. Resampling by case proportion reduced the EOD and DI for gender groups but slightly reduced accuracy in many cases. CONCLUSIONS: Among the VUMC cohort, both PCEs and ML models were biased against women, suggesting the need to investigate and correct gender disparities in CVD risk prediction. Resampling by proportion reduced the bias for gender groups but not for race groups.


Assuntos
Doenças Cardiovasculares , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Aprendizado de Máquina , Algoritmos , Algoritmo Florestas Aleatórias , Modelos Logísticos
8.
J Am Med Inform Assoc ; 30(3): 456-465, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36451277

RESUMO

OBJECTIVE: A previous study, PheMAP, combined independent, online resources to enable high-throughput phenotyping (HTP) using electronic health records (EHRs). However, online resources offer distinct quality descriptions of diseases which may affect phenotyping performance. We aimed to evaluate the phenotyping performance of single resource-based PheMAPs and investigate an optimized strategy for HTP. MATERIALS AND METHODS: We compared how each resource produced top-ranked concept unique identifiers (CUIs) by term frequency-inverse document frequency with Jaccard matrices comparing single resources and the original PheMAP. We correlated top-ranked concepts from each resource to features used in established Phenotype KnowledgeBase (PheKB) algorithms for hypothyroidism, type II diabetes mellitus (T2DM), and dementias. Using resources separately, we calculated multiple phenotype risk scores for individuals from Vanderbilt University Medical Center's BioVU DNA Biobank and compared phenotyping performance against rule-based eMERGE algorithms. Lastly, we implemented an ensemble strategy which classified patient case/control status based upon PheMAP resource agreement. RESULTS: Jaccard similarity matrices indicate that the similarity of CUIs comprising single resource-based PheMAPs varies. Single resource-based PheMAPs generated from MedlinePlus and MedicineNet outperformed others but only encompass 81.6% of overall disease phenotypes. We propose the PheMAP-Ensemble which provides higher average accuracy and precision than the combined average accuracy and precision of single resource-based PheMAPs. While offering complete phenotype coverage, PheMAP-Ensemble significantly increases phenotyping recall compared to the original iteration. CONCLUSIONS: Resources comprising the PheMAP produce different phenotyping performance when implemented individually. The ensemble method significantly improves the quality of PheMAP by fully utilizing dissimilar resources to capture accurate phenotyping data from EHRs.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Registros Eletrônicos de Saúde , Algoritmos , Bases de Conhecimento , Fenótipo
9.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196610

RESUMO

Over 200 million SARS-CoV-2 patients have or will develop persistent symptoms (long COVID). Given this pressing research priority, the National COVID Cohort Collaborative (N3C) developed a machine learning model using only electronic health record data to identify potential patients with long COVID. We hypothesized that additional data from health surveys, mobile devices, and genotypes could improve prediction ability. In a cohort of SARS-CoV-2 infected individuals (n=17,755) in the All of Us program, we applied and expanded upon the N3C long COVID prediction model, testing machine learning infrastructures, assessing model performance, and identifying factors that contributed most to the prediction models. For the survey/mobile device information and genetic data, extreme gradient boosting and a convolutional neural network delivered the best performance for predicting long COVID, respectively. Combined survey, genetic, and mobile data increased specificity and the Area Under Curve the Receiver Operating Characteristic score versus the original N3C model.

10.
Contemp Clin Trials ; 119: 106813, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660539

RESUMO

RATIONALE AND OBJECTIVE: APOL1 risk alleles are associated with increased cardiovascular and chronic kidney disease (CKD) risk. It is unknown whether knowledge of APOL1 risk status motivates patients and providers to attain recommended blood pressure (BP) targets to reduce cardiovascular disease. STUDY DESIGN: Multicenter, pragmatic, randomized controlled clinical trial. SETTING AND PARTICIPANTS: 6650 individuals with African ancestry and hypertension from 13 health systems. INTERVENTION: APOL1 genotyping with clinical decision support (CDS) results are returned to participants and providers immediately (intervention) or at 6 months (control). A subset of participants are re-randomized to pharmacogenomic testing for relevant antihypertensive medications (pharmacogenomic sub-study). CDS alerts encourage appropriate CKD screening and antihypertensive agent use. OUTCOMES: Blood pressure and surveys are assessed at baseline, 3 and 6 months. The primary outcome is change in systolic BP from enrollment to 3 months in individuals with two APOL1 risk alleles. Secondary outcomes include new diagnoses of CKD, systolic blood pressure at 6 months, diastolic BP, and survey results. The pharmacogenomic sub-study will evaluate the relationship of pharmacogenomic genotype and change in systolic BP between baseline and 3 months. RESULTS: To date, the trial has enrolled 3423 participants. CONCLUSIONS: The effect of patient and provider knowledge of APOL1 genotype on systolic blood pressure has not been well-studied. GUARDD-US addresses whether blood pressure improves when patients and providers have this information. GUARDD-US provides a CDS framework for primary care and specialty clinics to incorporate APOL1 genetic risk and pharmacogenomic prescribing in the electronic health record. TRIAL REGISTRATION: ClinicalTrials.govNCT04191824.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Negro ou Afro-Americano , Anti-Hipertensivos , Apolipoproteína L1 , Pressão Sanguínea , Testes Genéticos , Humanos , Farmacogenética
11.
J Pers Med ; 11(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357114

RESUMO

The complexity of genomic medicine can be streamlined by implementing some form of clinical decision support (CDS) to guide clinicians in how to use and interpret personalized data; however, it is not yet clear which strategies are best suited for this purpose. In this study, we used implementation science to identify common strategies for applying provider-based CDS interventions across six genomic medicine clinical research projects funded by an NIH consortium. Each project's strategies were elicited via a structured survey derived from a typology of implementation strategies, the Expert Recommendations for Implementing Change (ERIC), and follow-up interviews guided by both implementation strategy reporting criteria and a planning framework, RE-AIM, to obtain more detail about implementation strategies and desired outcomes. We found that, on average, the three pharmacogenomics implementation projects used more strategies than the disease-focused projects. Overall, projects had four implementation strategies in common; however, operationalization of each differed in accordance with each study's implementation outcomes. These four common strategies may be important for precision medicine program implementation, and pharmacogenomics may require more integration into clinical care. Understanding how and why these strategies were successfully employed could be useful for others implementing genomic or precision medicine programs in different contexts.

12.
Clin Pharmacol Ther ; 110(1): 179-188, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33428770

RESUMO

The value of utilizing a multigene pharmacogenetic panel to tailor pharmacotherapy is contingent on the prevalence of prescribed medications with an actionable pharmacogenetic association. The Clinical Pharmacogenetics Implementation Consortium (CPIC) has categorized over 35 gene-drug pairs as "level A," for which there is sufficiently strong evidence to recommend that genetic information be used to guide drug prescribing. The opportunity to use genetic information to tailor pharmacotherapy among adult patients was determined by elucidating the exposure to CPIC level A drugs among 11 Implementing Genomics In Practice Network (IGNITE)-affiliated health systems across the US. Inpatient and/or outpatient electronic-prescribing data were collected between January 1, 2011 and December 31, 2016 for patients ≥ 18 years of age who had at least one medical encounter that was eligible for drug prescribing in a calendar year. A median of ~ 7.2 million adult patients was available for assessment of drug prescribing per year. From 2011 to 2016, the annual estimated prevalence of exposure to at least one CPIC level A drug prescribed to unique patients ranged between 15,719 (95% confidence interval (CI): 15,658-15,781) in 2011 to 17,335 (CI: 17,283-17,386) in 2016 per 100,000 patients. The estimated annual exposure to at least 2 drugs was above 7,200 per 100,000 patients in most years of the study, reaching an apex of 7,660 (CI: 7,632-7,687) per 100,000 patients in 2014. An estimated 4,748 per 100,000 prescribing events were potentially eligible for a genotype-guided intervention. Results from this study show that a significant portion of adults treated at medical institutions across the United States is exposed to medications for which genetic information, if available, should be used to guide prescribing.


Assuntos
Prescrições de Medicamentos/estatística & dados numéricos , Genótipo , Farmacogenética , Testes Farmacogenômicos , Adulto , Idoso , Prescrição Eletrônica/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos
13.
JAMA Netw Open ; 3(12): e2029411, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315113

RESUMO

Importance: Genotype-guided prescribing in pediatrics could prevent adverse drug reactions and improve therapeutic response. Clinical pharmacogenetic implementation guidelines are available for many medications commonly prescribed to children. Frequencies of medication prescription and actionable genotypes (genotypes where a prescribing change may be indicated) inform the potential value of pharmacogenetic implementation. Objective: To assess potential opportunities for genotype-guided prescribing in pediatric populations among multiple health systems by examining the prevalence of prescriptions for each drug with the highest level of evidence (Clinical Pharmacogenetics Implementation Consortium level A) and estimating the prevalence of potential actionable prescribing decisions. Design, Setting, and Participants: This serial cross-sectional study of prescribing prevalences in 16 health systems included electronic health records data from pediatric inpatient and outpatient encounters from January 1, 2011, to December 31, 2017. The health systems included academic medical centers with free-standing children's hospitals and community hospitals that were part of an adult health care system. Participants included approximately 2.9 million patients younger than 21 years observed per year. Data were analyzed from June 5, 2018, to April 14, 2020. Exposures: Prescription of 38 level A medications based on electronic health records. Main Outcomes and Measures: Annual prevalence of level A medication prescribing and estimated actionable exposures, calculated by combining estimated site-year prevalences across sites with each site weighted equally. Results: Data from approximately 2.9 million pediatric patients (median age, 8 [interquartile range, 2-16] years; 50.7% female, 62.3% White) were analyzed for a typical calendar year. The annual prescribing prevalence of at least 1 level A drug ranged from 7987 to 10 629 per 100 000 patients with increasing trends from 2011 to 2014. The most prescribed level A drug was the antiemetic ondansetron (annual prevalence of exposure, 8107 [95% CI, 8077-8137] per 100 000 children). Among commonly prescribed opioids, annual prevalence per 100 000 patients was 295 (95% CI, 273-317) for tramadol, 571 (95% CI, 557-586) for codeine, and 2116 (95% CI, 2097-2135) for oxycodone. The antidepressants citalopram, escitalopram, and amitriptyline were also commonly prescribed (annual prevalence, approximately 250 per 100 000 patients for each). Estimated prevalences of actionable exposures were highest for oxycodone and ondansetron (>300 per 100 000 patients annually). CYP2D6 and CYP2C19 substrates were more frequently prescribed than medications influenced by other genes. Conclusions and Relevance: These findings suggest that opportunities for pharmacogenetic implementation among pediatric patients in the US are abundant. As expected, the greatest opportunity exists with implementing CYP2D6 and CYP2C19 pharmacogenetic guidance for commonly prescribed antiemetics, analgesics, and antidepressants.


Assuntos
Serviços de Saúde da Criança , Cálculos da Dosagem de Medicamento , Testes Farmacogenômicos , Padrões de Prática Médica , Medicamentos sob Prescrição , Criança , Serviços de Saúde da Criança/normas , Serviços de Saúde da Criança/estatística & dados numéricos , Estudos Transversais , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Registros Eletrônicos de Saúde/estatística & dados numéricos , Feminino , Perfil Genético , Humanos , Masculino , Pediatria/métodos , Pediatria/normas , Testes Farmacogenômicos/métodos , Testes Farmacogenômicos/estatística & dados numéricos , Padrões de Prática Médica/normas , Padrões de Prática Médica/estatística & dados numéricos , Medicina de Precisão/métodos , Medicamentos sob Prescrição/classificação , Medicamentos sob Prescrição/uso terapêutico , Estados Unidos
15.
Genet Med ; 22(11): 1898-1902, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32678355

RESUMO

PURPOSE: Genotype-guided antiplatelet therapy is increasingly being incorporated into clinical care. The purpose of this study is to determine the extent to which patients initially genotyped for CYP2C19 to guide antiplatelet therapy were prescribed additional medications affected by CYP2C19. METHODS: We assembled a cohort of patients from eight sites performingCYP2C19 genotyping to inform antiplatelet therapy. Medication orders were evaluated from time of genotyping through one year. The primary endpoint was the proportion of patients prescribed two or more CYP2C19 substrates. Secondary endpoints were the proportion of patients with a drug-genotype interaction and time to receiving a CYP2C19 substrate. RESULTS: Nine thousand one hundred ninety-one genotyped patients (17% nonwhite) with a mean age of 68 ± 3 years were evaluated; 4701 (51%) of patients received two or more CYP2C19 substrates and 3835 (42%) of patients had a drug-genotype interaction. The average time between genotyping and CYP2C19 substrate other than antiplatelet therapy was 25 ± 10 days. CONCLUSIONS: More than half of patients genotyped in the setting of CYP2C19-guided antiplatelet therapy received another medication impacted by CYP2C19 in the following year. Given that genotype is stable for a patient's lifetime, this finding has implications for cost effectiveness, patient care, and treatment outcomes beyond the indication for which it was originally performed.


Assuntos
Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária , Idoso , Clopidogrel/uso terapêutico , Citocromo P-450 CYP2C19/genética , Genótipo , Humanos
16.
AMIA Annu Symp Proc ; 2019: 363-370, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32308829

RESUMO

Precision health's more individualized molecular approach will enrich our understanding of disease etiology and patient outcomes. Universal implementation of precision health will not be feasible, however, until there is much greater automation of processes related to genomic data transmission, transformation, and interpretation. In this paper, we describe a framework for genomic data flow developed by the Clinical Informatics Work Group of the NIH National Human Genome Research Institute (NHGRI) IGNITE Network consortium. We subsequently report the results of a genomic data flow survey administered to sites funded by NIH-NHGRI for large scale genomic medicine implementations. Finally, we discuss insights and challenges identified through these survey results as they relate to both the current and a desirable future state of genomic data flow.


Assuntos
Genoma , Genômica , Disseminação de Informação , Medicina de Precisão , Biologia Computacional , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Humanos , Sistemas de Informação , Bases de Conhecimento , National Human Genome Research Institute (U.S.) , Inquéritos e Questionários , Estados Unidos
17.
J Alzheimers Dis ; 55(2): 797-811, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27802223

RESUMO

We report a novel approach for the delivery of curcumin to the brain via inhalation of the aerosol for the potential treatment of Alzheimer's disease. The percentage of plaque fraction in the subiculum and hippocampus reduced significantly when young 5XFAD mice were treated with inhalable curcumin over an extended period of time compared to age-matched nontreated counterparts. Further, treated animals demonstrated remarkably improved overall cognitive function, no registered systemic or pulmonary toxicity associated with inhalable curcumin observed during the course of this work.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios não Esteroides/administração & dosagem , Transtornos Cognitivos , Curcumina/administração & dosagem , Administração por Inalação , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/ultraestrutura , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/ultraestrutura , Presenilina-1/genética
18.
J Med Imaging (Bellingham) ; 3(2): 026002, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27226976

RESUMO

Quantitative fat-water MRI (FWMRI) methods provide valuable information about the distribution, volume, and composition of adipose tissue (AT). Ultra high field FWMRI of animal models may have the potential to provide insights into the progression of obesity and its comorbidities. Here, we present quantitative FWMRI with all known confounder corrections on a 15.2T preclinical scanner for noninvasive in vivo monitoring of an established diet-induced obesity mouse model. Male C57BL/6J mice were placed on a low-fat (LFD) or a high-fat diet (HFD). Three-dimensional (3-D) multiple gradient echo MRI at 15.2T was performed at baseline, 4, 8, 12, and 16 weeks after diet onset. A 3-D fat-water separation algorithm and additional processing were used to generate proton-density fat fraction (PDFF), local magnetic field offset, and [Formula: see text] maps. We examined these parameters in perirenal AT ROIs from LFD and HFD mice. The data suggest that PDFF, local field offset, and [Formula: see text] have different time course behaviors between LFD and HFD mice over 16 weeks. This work suggests FWMRI at 15.2T may be a useful tool for longitudinal studies of adiposity due to the advantages of ultra high field although further investigation is needed to understand the observed time course behavior.

19.
NMR Biomed ; 26(9): 1158-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23505120

RESUMO

Recent work has shown that solid-state (1) H and (31) P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, (31) P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus. In this work, (31) P MRI signal-to-noise ratio (SNR) was predicted on the basis of T1 and T2 * (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5-11.7 T) and subsequently verified by 3D ultra-short echo-time and zero echo-time imaging. Further, T1 was measured in deuterium-exchanged bone and partially demineralized bone. (31) P T2 * was found to decrease from 220.3 ± 4.3 µs to 98.0 ± 1.4 µs from 1.5 to 11.7 T, and T1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s. Deuteron substitution of exchangeable water showed that 76% of the (31) P longitudinal relaxation rate is due to (1) H-(31) P dipolar interactions. Lastly, hypomineralization was found to decrease T1, which may have implications for (31) P MRI based mineralization density quantification. Despite the steep decrease in the T2 */T1 ratio, SNR should increase with field strength as B0 (0.4) for sample-dominated noise and as B0 (1.1) for coil-dominated noise. This was confirmed by imaging experiments.


Assuntos
Osso e Ossos/fisiologia , Calcificação Fisiológica , Campos Magnéticos , Espectroscopia de Ressonância Magnética , Minerais/metabolismo , Fósforo/metabolismo , Animais , Deutério/metabolismo , Ondas de Rádio , Ovinos , Razão Sinal-Ruído , Fatores de Tempo
20.
J Bone Miner Res ; 27(12): 2573-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22807107

RESUMO

Bone water (BW) plays a pivotal role in nutrient transport and conferring bone with its viscoelastic mechanical properties. BW is partitioned between the pore spaces of the Haversian and lacuno-canalicular system, and water predominantly bound to the matrix proteins (essentially collagen). The general model of BW is that the former predominantly experiences fast isotropic molecular reorientation, whereas water in the bone matrix undergoes slower anisotropic rotational diffusion. Here, we provide direct evidence for the correctness of this model and show that unambiguous quantification in situ of these two functionally and dynamically different BW fractions is possible. The approach chosen relies on nuclear magnetic resonance (NMR) of deuterium ((2) H) that unambiguously separates and quantifies the two fractions on the basis of their distinguishing microdynamic properties. Twenty-four specimens of the human tibial cortex from 6 donors (3 male, 3 female, ages 27-83 years) were cored and (2) H spectra recorded at 62 MHz (9.4 Tesla) on a Bruker Instruments DMX 400 spectrometer after exchange of native BW with (2) H(2) O. Spectra consisted of a doublet signal resulting from quadrupole interaction of water bound to collagen. Doublet splittings were found to depend on the orientation of the osteonal axis with respect to the magnetic field direction (8.2 and 4.3 kHz for parallel and perpendicular orientation, respectively). In contrast, the isotropically reorienting pore-resident water yielded a single resonance line superimposed on the doublet. Nulling of the singlet resonance allowed separation of the two fractions. The results indicate that in human cortical bone 60% to 80% of detectable BW is collagen-bound. Porosity determined as the difference between total BW and collagen bound water fraction was found to strongly parallel micro-computed tomography (µCT)-based measurements (R(2) = 0.91). Our method provides means for direct validation of emerging relaxation-based measurements of cortical bone porosity by proton MRI.


Assuntos
Colágeno/metabolismo , Tíbia/metabolismo , Água/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anisotropia , Deutério , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Porosidade , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...